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FLOW EVALUATION I N  AN ARC-HEATEZI 

HYPERSONIC WIND TUNNEL* 

By Roger B. Stewart and John E. Grimaud 
Langley Research Center 

An investigation w a s  conducted t o  determine the  thermodynamic and chemical 
state of i n i t i a l l y  dissociated a i r  during expansion i n  a hypersonic nozzle. 
Results of tests i n  conical nozzles having t o t a l  divergence angles of loo and 
160 indicated an equilibrium expansion fo r  stagnation temperatures on the  order 
of 3,6000 K and stagnation pressures of 1 2  and 20 atmospheres. 
gram predicted that s ignif icant  departure from equilibrium would occur at these 
stagnation conditions.) 
w a s  based on independent measurements at  corresponding locations of wall s t a t i c  
pressures and center-l ine p i t o t  pressures. Good agreement w a s  found between 
Mach numbers as determined from measured w a l l  pressures and Mach numbers deter- 
mined from measured p i to t  pressures. 
culated real-gas flow properties t o  obtain local values of Reynolds number, 
effect ive core s i ze ,  density, velocity, and the  oxygen dissociation fraction. 

(A computer pro- 

The  method employed fo r  defining the  state of t h e  gas 

The measured pressures were used with cal- 

INTRODUCTION 

Reentry simulation i n  high-enthalpy hypersonic wind tunnels may produce 
r e su l t s  s ignif icant ly  a l te red  from free-f l ight  conditions because of  departures 
from equilibrium during t h e  nozzle expansion. A l s o ,  i n  an equilibrium expansion, 
real-gas effects due t o  chemical reactions can s ignif icant ly  alter predicted 
flow property values from perfect gas results. Thus, t o  correlate  t e s t  r e su l t s  
with f ree-f l ight  conditions, an accurate knowledge of t h e  thermodynamic and 
chemical state of t he  flow is  necessary i n  any spec i f ic  nozzle at each set of 
stagnation conditions. 

The e f f ec t s  of t he  extremely high pressure and temperature gradients i n  an 
expansion complicate an accurate analysis of t he  gas behavior by introducing 
coupled nonlinear expressions f o r  predicting t h e  flow property and chemical spe- 
c i e  var ia t ion throughout t h e  expansion. Considerable work has been done i n  

-_ - _ _  
*The information presented herein i s  based i n  part upon a thesis submitted 

by Roger B. Stewart i n  p a r t i a l  fulf i l lment  of t h e  requirements f o r  t h e  degree of 
Master of Aerospace Engineering, University of Virginia, Charlottesvil le,  
Virginia, August 1963. 



solving one-dimensional f l o w  equations and chemical kinet ic  equations f o r  a 
wide range of temperatures and pressures ( r e f s .  1 t o  6 ) ,  and extensive computer 
programs ex is t  fo r  calculating the  free-stream flow properties i n  an equilibrium 
or  nonequilibrium expansion ( re fs .  3 and 7). There is, however, l i t t l e  quanti- 

* t a t i ve  experimental evidence known t o  the  authors, except fo r  the  work of refer- 
ence 8, that indicates whether or not a given airf low w i l l  duplicate the  pre- 
dicted behavior. The uncertainty i n  predicting the  f l a w  properties i s  due i n  
part t o  insuff ic ient  knowledge of the  dissociation-recombination process tha t  
actual ly  OCCUTS. This process involves large energy exchanges and re la t ive ly  
large numbers of co l l i s ions  and i s  dependent on t h e  kind and amounts of species 
present and on reaction r a t e s  that a re  not w e l l  established at this time. 

The present investigation w a s  undertaken t o  provide a cal ibrat ion and flow 
evaluation i n  a small arc-heated hypersonic wind tunnel. 
comparison was sought between predicted flow properties and ac tua l  measured 
values. 
f o r  t he  t w o  nozzles investigated herein w a s  not observed, ra ther ,  the  r e su l t s  
indicated an equilibrium expansion. 

A t  t he  same time, a 

The departure from equilibrium calculated by the  method of reference 7 

Measurements of t he  w a l l  s t a t i c  pressures along both nozzles investigated 
were made at  Mach numbers ranging from about 5 t o  7.3. Separate measurements of 
center-line p i t o t  pressures were made a t  corresponding locations and, i n  addi- 
t ion,  were carried t o  a downstream equilibrium Mach number of 8.5. A l l  of these 
measurements were obtained f o r  stagnation temperatures f r o m  about 3,200° K t o  
3,900' K and stagnation pressures of  12 and 20 atmospheres. 

SYMBOLS 

A 

C f  

h 

h 
- 

% 
M 

m 

mRe 

N2 

02 

2 

cross-sectional area of nozzle 

skin-fr ic t ion coeff ic ient  

frozen specif ic  heat defined i n  equation (9) 

molar enthalpy 

mass enthalpy 

recombination r a t e  

molecular weight of gas 

gas flow rate 

Reynolds number 

molecular nitrogen 

molecular oxygen 



0 atomic oxygen 

P pressure 

R gas constant 

r radius 

T temperature 

V velocity 

x species mole f rac t ion  

X ax ia l  center-l ine distance 

P pressure-gradient parameter i n  loca l  s imi la r i ty  solution of 
boundary-layer thiclmess defined i n  equation (10) 

frozen r a t i o  of specif ic  heats defined i n  equation (8) 7 

P mass density 

Subscripts: 

a w  adiabatic wall 

b body coordinate 

C cold 

f point of freezing 

h hot 

i chemical species 

0 standard reference conditions 

t stagnation conditions 

W w a l l  

X a x i a l  center-l ine distance 

1 free  stream 

2 behind normal shock 
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Superscripts : 

1 quantit ies evaluated at  reference condition 

* sonic throat 

APPARATUS' AND MODELS 

This experiment w a s  conducted i n  the 900-kilowatt continuous-arc tunnel at 
the Langley Research Center with air  as the  t e s t  medium. The tunnel employed a 
rotat ing direct-current arc  with water-cooled copper electrodes and was equipped 
with a 0.133-inch-diameter, c i rcular ,  contoured throat,  which was water cooled. 
Reference 9 gives a description of the  tunnel. Figure 1 i s  a photograph of the 
tunnel with the diffuser  and exhaust system omitted. Two solid-copper, conical 
nozzles were used; one had a l O O  t o t a l  divergence angle, and the other had a 
16O t o t a l  divergence angle. Both nozzles expanded t o  a geometric area r a t i o  of  
508 and were uncooled. Figure 2 i s  a diagram of  the  two nozzles showing the 
location of the pressure or i f ices .  Figure 3 shows the water-cooled p i to t  pres- 
sure probe used. 
nozzle. Miniature thermopile gages having a usable pressure range of 0 . 1 t o  
10 mm Hg were used fo r  a l l  low-static-pressure measurements ( f ig .  2) .  Outputs 
from these gages were recorded by an 18-channel oscillograph. 
sure gages, rated at  1 psia and higher, were used fo r  measurements of upstream 
s t a t i c ,  p i to t ,  and stagnation-chamber pressures. 

Also shown are  typ ica l  probe and wall o r i f i ce  locations i n  the 

Transducer pres- 

Exact duplication of stagnation conditions was not possible fo r  two reasons. 
F i r s t ,  determination of stagnation enthalpy i s  subject t o  some uncertainty 
i t s e l f .  Second, power regulation of the a rc  w a s  only within 6 percent. 

After fn i t i a t ion  of the arc,  a period of 5 t o  10 seconds was required for  
the  wall s t a t i c  'pressures t o  reach steady-state conditions. 
time was 40 seconds which allowed be t te r  than 30 seconds of  steady-state 
readings. 

The average run 

The nose of the  p i to t  probe was located on the  nozzle center l i n e  at loca- 
t ions  corresponding t o  the w a l l  pressure or i f ices .  
source flow i n  the nozzle is  made.) No correction t o  this placement was made by 
moving the  probe downstream a distance equal t o  the  detachment distance; however, 
the  e r ror  introduced by the positioning of the  probe t i p  on the constructed arc  
l i nes  was  of very small magnitude. 
pressure dis t r ibut ion was obtained along with one pitot-pressure reading. 

(The assuuqtion of rad ia l  

For each t e s t  the complete wall-static- 
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Stagnation-Enthalpy Determination 

One method of evaluating the stagnation enthalpy i s  the  energy-balance 
technique-. 
from the input power. 
t e s t  gas (on the order of 10 percent) severely r e s t r i c t s  the  accuracy of an 
energy-balance technique, because small errors  i n  de-termination of the power 
losses t o  the cooling water can cause large percentage errors  i n  the determina- 
t i o n  of power input t o  t he  air. The energy-balance technique w a s  not considered 
suf f ic ien t ly  re l iab le  f o r  t he  investigation described herein. 

I n  t h i s  method the  power losses t o  the cooling water are  subtracted 
A low overall  efficiency for  net energy addition in to  the 

The technique, used f o r  determining the enthalpy i n  t h i s  investigation and 
f o r  which a l l  the  noted temperatures apply, was the  commonly designated "sonic- 
throat"  method. 
was obtained from the  following equation for t he  s t a t i c  enthalpy at a sonic 
t hroat : 

The stagnation enthalpy determined by the  sonic-throat technique 

where E* i s  i n  Btu/lb and Tc i s  i n  OR. This equation agrees within 6 per- 
cent with exact calculations f o r  an equilibrium, isentropic expansion from the 
stagnation chamber t o  the throat a t  the enthalpy levels  of t h i s  investigation. 
A recent experimental study with the a rc  j e t  exhausting through the throat  sec- 
t i on  into a calorimeter has shown ..that equation (1) produces values of stagna- 
t ion  temperature within k5 percent of the stagnation temperatures determined 
by the t o t a l  calorimeter. 

Flow Expansion and Uniformity 

Because of the magnetic rotat ion of the  arc,  the poss ib i l i ty  of s w i r l  and 
nonuniform heating exis ts .  A t  the  present time there  a re  no measurements t o  
indicate the magnitude of  these effects;  however, it i s  believed that the strong 
magnetic f i e l d  used (12,000 gauss) produces rapid mixing which would tend t o  
minimize uneven heating. A plenum chamber downstream of the  arc  chamber was 
used fo r  the purpose of allowing complete mixing of t he  gas and damping of the 
swirl f romthe arc. The low axial flow velocity through the  plenum chamber (on 
the order of 100 f t / sec)  provided a re la t ive ly  long dwell time before expansion 
through the nozzle. . 

Pressure Measurements 

The pressure t races  from the oscillograph recorders could be read t o  
+0.00035 psia  fo r  the  thermopile gages and k0.0023 psia  f o r  the  transducer gages. 
Accuracies quoted for  the thermopile gages are kl.5 percent of scale reading i n  
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t he  l i nea r  portion of the  cal ibrat ion curve s o  t h a t  at the  highest pressure 
read, the  maximum overal l  accuracy was k1.52 percent of actual  pressure, o r  
kO.0029 psia.  A t  t he  lowest pressures read, t he  maxi” overall  accuracy w a s  
k5 percent of ac tua l  pressure, o r  *O.OOO5 psia.  
ducer gages i s  k1.5 percent so that a t  the  highest pressures reaa the  maximum 
accuracy w a s  k3.5 percent of actual  pressure. 
were calibrated with a primary standard and the  experimental wiring scheme a t  
the  t e s t  si te.  
racy were used. 

Quoted accuracy for  the  t rans-  

A l l  gages used i n  t h i s  experiment 

Only those gages f a l l i ng  within t h e  manufacturers’ quoted accu- 

FLOW PROPERIT CAI.CULATIONS 

High-temperature gas f lows  can exhibit  an i n a b i l i t y  t o  redis t r ibute  energy 

Because of t h i s  phenomenon, account must be taken of depar- 
among the  different  act ive modes i n  times that are small compared with dwell 
times i n  a nozzle. 
tures from equilibrium. 

For reaction times much shorter than dwell times, t he  f l o w  maintains an 
equilibrium composition throughout t h e  expansion and the  energy release t o  t he  
stream from the  excited modes keeps pace with the  sharp pressure and temperature 
drop. If  the net reaction time fo r  the  production and removal of a given species 
i s  of the  same order as nozzle dwell time, then nonequilibrium ef fec ts  w i l l  dom- 
inate  the  f l o w  process i n  such a way as t o  produce measurable differences i n  the  
stream properties.  I n  the  l i m i t ,  if t h e  net r a t e  of removal of species that 
occur at high temperatures falls  t o  zero, t he  f l o w  i s  chemically frozen and 
expands i n  a manner similar t o  a perfect gas, that is, with a constant r a t i o  of 
specif ic  heats. IC 

The previous p o s s i b i l i t i e s  s e t  limits on the  f l o w  property and chemical 
specie var ia t ions f o r  a given high-temperature expansion. Because of t h e  sig- 
nif icant  changes i n  flow properties t ha t  can occur under different  ra tes  of 
expansion, calculations were needed of the  predicted flow property values f o r  
specif ic  nozzles and stagnation conditions. 
calculations t h a t  were used t o  check t h e  r e su l t s  of the  present experiment i s  
given i n  the  following sections. 

A description of the flow property 

Equilibrium Flow 

The Langley Research Center has a computing program fo r  the  equilibrium 
expansion of air using the  equations given i n  reference 10 but with corrections 
t o  several  of  t he  constants. From these calculations,  p lo ts  were made of t he  
var ia t ion of stagnation pressure behind a normal shock with free-stream s t a t i c  
pressure, which a re  the  two  properties measured i n  t h i s  experiment ( re f .  11). 
The normal-shock properties were obtained by use of t he  conservation equations 
of mass, momentum, and energy. 
passing through t h e  shock and t o  the  body was made. For a flow with a stagna- 
t i o n  temperature below 4,000’ K and a pressure above 10 atmospheres, the  stagna- 
t i o n  pressure behind a normal shock is  nearly independent of the  free-stream 
chemical composition and relaJcation e f fec ts  behind the  shock. 

Neglect of  t he  chemical specie variation i n  
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Nonequilibrium Flow 

The Langley Research Center has a computer program for  the  nonequilibrium 
expansion of a three-component model of air  (0, 02, N2), which uses the  equa- 
t ions  of reference 7. 
dissociation-recombination of oxygen. 
i s  several orders of magnitude below that of oxygen, i n  the  temperature range 
considered herein, this approach should be valid. 
reaction rate used, i s  s t i l l  an open one. 
following: 

This program employs only one reaction, t ha t  o f t h e  
Because the  fract ion of atomic nitrogen 

However, the  question of the  
Reference 7 used a rate given by the 

. This r a t e  i s  a corrected form of ft6 
(par t ic les)2(  sec) 

where kr has the  u n i t  

t ha t  given i n  reference 12 and i s  i n  agreement with the ra tes  given i n  refer- 
ences 13 and 14, which were obtained with molecular oxygen as the th i rd  body. 
Reference 7 assumed molecular nitrogen t o  have the same influence on dissocia- 
t ion  as  does molecular oxygen. A discussion of the influence of reaction rates ,  
which a t  present vary over a rather wide range ( r e f .  l?), i s  beyond the scope of 
t h i s  paper. However, a check of the nonequilibrium behavior predicted by refer- 
ence 7 w a s  made by using the more complete program i n  reference 3 .  
nation temperature of 4,OOOO K and a stagnation pressure of 12 atmospheres, the 
free-stream properties calculated by both programs were i n  close agreement. I n  
par t icular ,  the stream s t a t i c  pressures at  an area r a t i o  of 145 differed by l e s s  
than 7 percent from each other. 

A t  a stag- 

The program of reference 7 requires a nozzle geometry as input i n  order t o  
start the  deviation from equilibrium, as well as, t o  specif'y the relationship 
between the  expansion and the  nozzle center-line coordinate. The shape of the 
geometric throat section used i n  the  f a c i l i t y  of t h i s  fnvestigation w a s  used as 
input; however, downstream of the  throat section the effect ive core size,  
obtained from p i t o t  measurements, was used t o  specify the  geometry. 
found l a t e r  that only very s l igh t  differences resulted when the  geometric shape 
of the nozzle was used as input. Fromthe computed free-stream properties of 
t h i s  program, normal-shock properties were calculated by using the f lu id  flow 
conservation equations. A s  previously noted, fo r  the  pressure and temperatures 
of in te res t  herein, the  assumption of thermodynamic and chemical equilibrium 
from immediately behind the shock t o  the  body should s t i l l  be valid. 

It was 

Frozen Flow 

For dwell times tha t  are small compared with reaction times, a frozen 
expansion would occur i n  the  nozzle. T h i s  exgansion would characterize a 
bounding l i m i t  on the behavior of a par t icular  gas and would const i tute  t he  
widest variation from an equilibrium expansion. 
made fo r  calculating the  frozen stream properties: 

The following assumptions w e r e  
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(1) F u l l  equi l ibrat ion of the t rans la t iona l  and ro ta t iona l  energy modes. 

(2) No energy release from vibrat ional  and dissociat ive energy modes down- 
stream of the throat  minimum. 

( 3 )  Equilibration of a l l  energy modes d i r ec t ly  behind the  shock. 

(4) A i r  as a mixture of oxygen and nitrogen with t h e  cold mole f rac t ion  of 
oxygen being 21 percent and the cold mole f rac t ion  of nitrogen being 79 percent. 

( 3 )  No nitrogen dissociation. 

Values of t he  mole f rac t ions  of 0, 02, and N2 were obtained from computed 
properties a t  the  throat  minimum fo r  the par t icu lar  stagnation conditions of 
i n t e re s t .  For a constant composition expansion, downstream of t h e  throat mini-  
mum, the mole f rac t ion  of each species remains constant so t h a t  by choosing 
temperature in te rva ls  down the nozzle the  following equations, from refer-  
ences 16 and 17, can be solved t o  give the  free-stream properties: 

cP 
- R  

P 

P = 1 xicp , i  

where cp,i  i s  the  specif ic  heat fo r  each species. 
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Normal-shock properties were calculated by use of the  conservation of mass, 
momentum, and energy as i n  the previous cases. 
stagnation pressure behind a normal shock with free-stream s t a t i c  pressure as 
calculated f o r  the  three expansions described and a l so  the perfect gas variation. 
It should be noted that all deviations from equilibrium involve a one-directional 
shift i n  the  curves shown i n  figure 4; tha t  is, any departures from equilibrium 
i n  the  flow will move the  nonequilibrium curve i n  the direction of the  frozen 
curve. 

Figure 4 shows the variation of 

NOZZI;E-BOUNIIAKY-LAYER CALCWIONS 

Because of the present lack of knowledge concerning boundary-layer growth 
i n  a reacting flow, an attempt t o  predict the development of the effective dis- 
placement thickness f o r  comparison with the  measured t h i c b e s s e s  was made. The 
fac t  that the favorable pressure gradient i n  the  nozzle w a s  only steep through 
the throat region, plus the  fac t  that the  upstream portions of the nozzle were 
highly cooled, l ed  t o  use of t he  method of loca l  s imilar i ty  fo r  computing the 
boundary-layer thicknesses. The following general features help t o  es tabl ish 
how the method was applied: F i r s t ,  the  nozzle was assumed similar t o  a body of 
revolution with the  upstream face taken as the stagnation point. Second, the  
loca l  boundary-layer prof i les  were assumed similar and were defined by the 
pressure-gradient parameter of reference 18: 

where for  a body of revolution j = 1. The inviscid flow i s  assumed t o  comence 
at the stagnation point of the  nozzle face. By knowing the nozzle contour and a 
given stagnation pressure and enthalpy, the p dist r ibut ions were obtained. The 
physical displacement thicknesses were calculated by using the similar solutions 
parameters of  reference 18 and the t h i c h e s s  functions of reference 19. 

A second approach f o r  calculating real-gas displacement thiclmesses w a s  made 
by using the  momentum in tegra l  equation of reference 20. 
f r i c t fon  l a w  based on the  Blasius f la t -p la te  relationship and modified by the  
reference enthalpy method i s  writ ten as: 

A n  assumed skin- 

Cf = Cf'  p' 
p1 

where 

0.664 C f '  = 

i e  
and p '  is  determined at Eckert's reference enthalpy: 
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' I  

h '  = 0.5hw + 0.22haw + 0.28hl 

The computer program of reference 20 was formulated and displacement thicknesses 
were calculated fo r  an i n i t i a l  potent ia l  flow defined by the  loo and 16O t o t a l  
divergence angles. 

RESULTS AND DISCUSSION 

The use of w a l l  s t a t i c  pressure t o  determine free-stream s t a t i c  pressure 
involved several  important considerations: F i r s t ,  the  expanding f l o w  was assumed 
t o  propagate from a source. T h i s  is not s t r i c t l y  t rue,  of course, but fo r  the  
nozzle geometry used, deviation from a one-dimensional. flow should not be a c r i t -  
i c a l  factor .  Second, t he  Reynolds numbers i n  both nozzles were suf f ic ien t ly  high 
(5 x lo4 per foot) that the  pressure gradient and subsequent pressure change 
through the boundary layer  should be negligible.  
t o  ver i fy  that downstream pressure disturbances a re  not fed upstream through the 
boundary layer  along the  nozzle w a l l .  
sure increases and subsequent separation can occur as a resu l t  of such feedback. 
Three techniques were used t o  check f o r  possible disturbances on the  w a l l .  
t h e  first technique high pressure was imposed on the nozzle w a l l  by means of 
shock impingement f romthe  p i t o t  probe. The w a l l  pressure prof i les  obtained i n  
t h i s  manner were compared with prof i les  obtained with the  probe removed from the 
nozzle. The e f fec ts  were small i n  the  region corresponding t o  the  nose of the  
probe. Figure 5 shows a se r i e s  of nozzle w a l l  s t a t i c  pressure prof i les  with the  
probe at  two different  locations i n  the  nozzle ( f ig s .  5(a) and 5 (b ) )  and with 
the  probe removed from the  tunnel ( f ig .  5(c)) .  The progressive disturbance at 
t h e  wall as the  probe was moved upstream i n  the  nozzle is  seen by a comparison 
of  these figures. The disturbances at  the  w a l l  with the  probe located at  a geo- 
metric area r a t i o  of  193 as shown i n  figure 5(b) have increased t o  an unaccept- 
able mgnitude. Therefore, pressures a t  t h i s  pitot-probe location were not con- 
sidered as being within the  required accuracy f o r  t h i s  investigation. 

Finally,  a check must be made 

I n  a hypersonic nozzle, large w a l l  pres- 

In 

The second technique employed a modification of t he  loo nozzle i n  which an 

This modification fortunately allowed fo r  a pressure 
extension t o  a 1-foot-diameter t e s t  section was made. 
modified-tunnel geometry. 
p rof i le  along t h e  or iginal  nozzle w a l l  t o  be obtained with a tunnel back pressure 
tht was two orders o f  magnitude below the  level used during the  i n l t i a l  t e s t s  
reported herein. 
p rof i les  a re  i n  close agreement and it i s  apparent that a complete expansion 
ex i s t s  i n  both configurations with no downstream ef fec ts  on the upstream f l o w .  

See figure 5(d) f o r  

Two pressure prof i les  a re  shown i n  f igure 5(d). The pressure 

The th i rd  technique used t o  check f o r  possible disturbances on the  w a l l  w a s  
a comparison of measured p i t o t  pressure and calculated free-stre- s t a t i c  pres- 
sure fo r  an equilibrium expansion from stagnation conditions. Because nonequi- 
librium ef fec ts  a re  unidirectional tending t o  decrease s t a t i c  pressure f romthe  
equilibrium value, any pressure disturbances at  the  w a l l  would ra i se  the  w a l l  
pressure above i ts  equilibrium value and thus provide a check on such disturb- 
ances. Because of the  complete w a l l  pressure prof i les  obtained f o r  each run, 
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t h e  poss ib i l i ty  that nonequilibrium ef fec ts  were being compensated fo r  by dis- 
turbances propagating upstream was removed. 

The static-pressure p ro f i l e  i n  the  16O nozzle i s  shown i n  f igure 5(c) .  A t  
geometric area r a t io s  equal t o  those i n  the  loo nozzle, t he  s t a t i c  pressures are 
seen t o  be lower i n  the  16O nozzle. The slope of the  pressure-profile curve is 
nearly the  same for  both nozzles whicb suggests that t h e  shorter w a l l  length i n  
t h e  16' nozzle and resul t ing smaller boundary-layer growth are  responsible fo r  
these lower pressures. 

The center-line p i t o t  pressure d is t r ibu t ion  i n  the  10' nozzle and the  t e s t  
section are  shown i n  f igure 6. 
zle are seen t o  be similar f o r  different  stagnation pressures when plot ted i n  
nondimensional form. In  the t e s t  section t h i s  s imilar i ty  did not hold at the  
higher stagnation pressures where the  flow expanded from a f i n a l  Mach number 
(based on an equilibrium expansion) of 7.3 t o  8.5. 
w a s  observed visual ly  i n  the  luminous flow by a lengthening of the  f i r s t  half 
diamond (shock from t h e  cone-cylinder junction) at a stagnation pressure of 
20 atmospheres. Because of the  narrow range of stagnation temperatures i n  this 
investigation as well as the  uncertainty with regard t o  t h e  accuracy of deter- 
mining stagnation temperatures, a comparison of enthalpy ef fec ts  on the  e m -  
sion parameters does not s e e m  ju s t i f i ab le .  Nevertheless, t he  real-gas e f fec ts  
due t o  the  high stagnation temperature l eve l  at which these studies were made 
were appreciable as seen i n  f igure 7. The real-gas equilibrium, nonequilibrium, 
and frozen calculations of stagnation pressures behind a normal shock and free- 
stream s t a t i c  pressure shown i n  figure 7 were obtained from the  previously 
described computer programs and hand calculations. Figure 7 indicates an e q d -  
librium expansion i n  both nozzles a t  a stagnation pressure of 12 atmospheres and 
a l so  i n  the  10' nozzle at  a stagnation pressure of 20 atmospheres. Some of t he  
experfmental points do not f a l l  exactly on the  theore t ica l  curves, but this i s  
due t o  t h e  fac t  that the  theore t ica l  curves were plot ted on the  bas i s  of average 
stagnation conditions f o r  the t o t a l  number of runs indicated by the  number of 
experimental points.  
during each run.) 
not of t h e  magnitude implied by figure 7. If each measured point is compared 
with the  theore t ica l  curve obtained f r o m  the  par t icu lar  stagnation conditions 
fo r  that run, the var ia t ion f r o m  predicted equilibrium values i s  very small. 
For instance, t he  Mach number determined f romthe  real-gas equilibrium calcu- 
la t ions  ( f o r  a given run) by use of measured s t a t i c  pressure varied at most by 
3 percent from the  Mach number determined by use of measured p i t o t  pressure. 

The prof i les  i n  the upstream portion of the  noz- 

The cause of this phenomenon 

(Pi to t  pressure could be measured a t  only one location 
It should therefore be noted that the  experimental e r ro r  i s  

Verification of an equilibrium expansion permits t he  use of r ed -gas  flow 

A t  the  higher stagnation pressures, the  displacement thickness was less 
property tabulations i n  order t o  f ind  other properties and the  effect ive area 
r a t io .  
than that at t h e  low stagnation pressures &s expected. The e f f ec t  on t h e  Mach 
number of thinning the  boundary layer  was small, however, due primarily t o  t h e  
f ac t  that high Mach number flows are insensi t ive t o  variations i n  expansion 
r a t io .  
shown i n  these figures a re  calculated area ra t io s  obtained by using the  method 
of l oca l  s imilar i ty .  
i n i t i a l  disturbances i n  t h e  plenum chamber and nozzle entrance due t o  a rc  

Figures 8 and 9 show the  e f fec t  of Increasing stagnation pressure. Also 

Although this should be a val id  approach i n  these nozzles, 



ro ta t ion  prevent an accurate description of t he  ear ly  flow. 
no experimental data on w h a t  the magnitude of such e f f ec t s  may be. 
figures 8 and 9 imply a howledge o f t h e  physical displacement thickness, it i s  
not t r u e  that t h i s  i s  lmown. The reason is  that t h e  effect ive throat  area i s  
not knm and because of the small throat  s i ze  boundary-layer growth i n  t h i s  
region o f t h e  nozzle has a large e f fec t  on the core size.  The method of refer-  
ence 18 deals primarily with heat t ransfer .  The in tegra l  energy equation i s  
sa t i s f i ed  and it might be anticipated that t h e  calculated thicknesses using t h i s  
method might not give as re l iab le  an indication of displacement e f fec ts  as a 
momentum in tegra l  approach. 
core s ize  from the  boundary-layer calculat ions of reference 20 was used t o  
obtain equilibrium s t a t i c  pressures previously computed. 
s t a t i c  pressure against geometric area r a t i o  i n  the  10' nozzle is  shown i n  f ig-  
ure IO. 
upstream nozzle location with good agreement occurring i n  the downstream portion. 
As pointed out i n  reference 20 the prediction of boundary-layer growth i n  the  
upstream portion of t he  nozzle should not be expected t o  be as r e l i ab le  as near 
t he  ex i t  because of neglect of the  terms accounting f o r  the effect  of ax ia l ly  
symmetric flow. 
tant  factor.  

A t  present there are 
Although 

The results tend t o  bear this out. The effect ive 

A plot of predicted 

The predicted yalues are 40 percent above measured values at  the  most 

I n  the  small nozzle used herein, t h i s  appears t o  be an impor- 

I f  stagnation temperatures close t o  those calculated exis t ,  it. seems worth- 
w h i l e  t o  question the apparent lack of agreement between t h e  predicted nonequi- 
librium behavior and the  measured equilibrium expansion. 
r e s t r i c t i o n  on t h i s  investigation w a s  the  i n a b i l i t y  t o  produce higher stagnation 
temperatures. 
measurements attempted were c r i t i c a l l y  dependent on having enerQ absorbed by 
t h i s  process. 
ture increases, however, f o r  temperatures m c h  below 3,600~ K the ef fec ts  of 
nonequilibrium behavior would not be discernible.  A number of t he  tests were 
conducted at temperatures calculated t o  be 3,90O0 IC, but many were calculated 
closer t o  3,6000 K which i s  very close t o  a lower l i m i t  as far as measurable 
e f f ec t s  are concerned. 
equilibrium behavior of reference 7 i s  dependent on throat  configuration. I n  
t h i s  investigation, the  geometric throat  shape was  used fo r  the  computations. 
However, viscous and centr i fugal  e f fec ts  i n  the throat  region could reduce the  
effect ive temperature gradient and thereby reduce the tendency toward nonequi- 
librium. 
oyygen describe the  ac tua l  kinet ic  process a t  temperatures below k,OOOo K. I n  
order t o  investigate the  e f fec t  of the  recombination rate on the predicted non- 
equilibrium flow properties, t he  recombination r a t e  given i n  equation (2)  w a s  
increased an order of magnitude and the  nonequilibrium program was run. 
stagnation>temperature of 3,6000 K and stagnation pressure of I 2  atmospheres the  
pressures predicted by using the higher recombination rate w e r e  only 1.5 percent 
above the nonequilibrium pressures predicted by us ing  t h e  r a t e  given by 
equation (2).  

One unfortunate 

A t  about 3,600~ K oxygen is  just beginning t o  dissociate  and the  

Departures from equilibrium are more pronounced as the  tempera- 

A second point t o  be noted i s  that the  calculated non- 

It i s  not known how accurately the  r a t e  constants fo r  recombination of 

For a 



CONCLUDING FCEMAHG 

Simultaneous measurements of stream s t a t i c  pressure measured at  the  w a l l  
and center-line p i to t  pressure were used t o  check fo r  nonequilibrium ef fec ts  i n  
the  nozzle flow. Three independent methods were used t o  insure t h a t  wall s t a t i c  
pressures w e r e  an accurate measure of stream s t a t i c  pressures. The measured 
pressures showed close agreement with values calculated fo r  an equilibrium expan- 
sion as compared with values calculated for  a nonequilibrium o r  a frozen expan- 
sion. The equilibrium expansion indicated by these measurements occurred fo r  
stagnation pressures of 12 and 20 atmospheres and stagnation temperatures up 
t o  3,900° K i n  the  10' and 1 6 O  conical nozzles used i n  this investigation. 
Increasing the recombination r a t e  by an order of magnitude had an insignif i -  
cant e f fec t  on bringing the  predicted nonequilibrium pressures in to  agreement 
with the  measured pressures. 

A momentum in t eg ra l  approach using real-gas properties and a modified f lat-  
p la te  skin-fr ic t ion l a w  predicted laminar real-gas boundary-layer growth reason- 
ably w e l l  i n  the  downstream portion of t he  10' conical nozzle used i n  t h i s  
investigation. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, V a . ,  March 6, 1964. 
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Figure 1.- The 900-kilowatt continuous-arc tunnel. L-64-3015 
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Figure 2.- Static-pressure orifice locations for 10' and 16O nozzles. 
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Figure 4.- Variation of stagnation pressure behind a normal shock with stream s t a t i c  pressure.  
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Figure 5.- Measured w a l l  s t a t i c  pressure.  



1c L 

i 
r: 10" i I 1  10" 

3 L 5 6 7 8 9 1 0  

3150 11.8 

ql, O K  ~ ~ , ~ , a t m  Pitot-probe 

3600 11.4 A/A" = 1'35 

A/A*, geometric 

(b) Upstream probe loca t ion .  

Figure 5.- Continued. 
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(c) 10' and 16' nozzles. 

Figure 5.- Continued. 
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Figure 5.- Concluded. 
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Figure 6 .- Longitudinal p i t o t  pressure d i s t r ibu t ion  i n  loo nozzle. 
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Figure 7.- Variation of measured pitot pressure with measured w a l l  static pressure. 
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Figure 8. - Variation of boundary-layer thickness with longitudinal center-line distance from throat. 
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Figure 9.- Effect of nozzle expansion rate on boundary-layer displacement thickness. 
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